The convergence of V-cycle multigrid algorithms for axisymmetric Laplace and Maxwell equations

نویسندگان

  • Jayadeep Gopalakrishnan
  • Joseph E. Pasciak
چکیده

We investigate some simple finite element discretizations for the axisymmetric Laplace equation and the azimuthal component of the axisymmetric Maxwell equations as well as multigrid algorithms for these discretizations. Our analysis is targeted at simple model problems and our main result is that the standard V-cycle with point smoothing converges at a rate independent of the number of unknowns. This is contrary to suggestions in the existing literature that line relaxations and semicoarsening are needed in multigrid algorithms to overcome difficulties caused by the singularities in the axisymmetric Maxwell problems [6]. Our multigrid analysis proceeds by applying the well known regularity based multigrid theory. In order to apply this theory, we prove regularity results for the axisymmetric Laplace and Maxwell equations in certain weighted Sobolev spaces. These, together with some new finite element error estimates in certain weighted Sobolev norms, are the main ingredients of our analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularity and multigrid analysis for Laplace-type axisymmetric equations

Consider axisymmetric equations associated with Laplace-type operators. We establish full regularity estimates in high-order Kondrat′vetype spaces for possible singular solutions due to the non-smoothness of the domain and to the singular coefficients in the operator. Then, we show suitable graded meshes can be used in high-order finite element methods to achieve the optimal convergence rate, e...

متن کامل

Multigrid methods for saddle point problems: Stokes and Lamé systems

We develop new multigrid methods for a class of saddle point problems that include the Stokes system in fluid flow and the Lamé system in linear elasticity as special cases. The new smoothers in the multigrid methods involve optimal preconditioners for the discrete Laplace operator. We prove uniform convergence of the W -cycle algorithm in the energy norm and present numerical results for W -cy...

متن کامل

Multigrid Methods for Maxwell's Equations List of Tables

In this work we study finite element methods for two-dimensional Maxwell’s equations and their solutions by multigrid algorithms. We begin with a brief survey of finite element methods for Maxwell’s equations. Then we review the related fundamentals, such as Sobolev spaces, elliptic regularity results, graded meshes, finite element methods for second order problems, and multigrid algorithms. In...

متن کامل

Parallel 3 D Maxwell Solvers based on Domain Decomposition Data Distribution

The most efficient solvers for finite element (fe) equations are certainly multigrid, or multilevel methods, and domain decomposition methods using local multigrid solvers. Typically, the multigrid convergence rate is independent of the mesh size parameter, and the arithmetical complexity grows linearly with the number of unknowns. However, the standard multigrid algorithms fail for the Maxwell...

متن کامل

Variational and Non-variational Multigrid Algorithms for the Laplace-beltrami Operator

We design and analyze variational and non-variational multigrid algorithms for the Laplace-Beltrami operator on a smooth and closed surface. In both cases, a uniform convergence for the V -cycle algorithm is obtained provided the surface geometry is captured well enough by the coarsest grid. The main argument hinges on a perturbation analysis from an auxiliary variational algorithm defined dire...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 75  شماره 

صفحات  -

تاریخ انتشار 2006